defocus-modules/lib/camera.c

157 lines
4.9 KiB
C
Raw Normal View History

2023-05-08 13:28:53 +02:00
#include <defocus/camera.h>
#include <string.h>
2023-05-09 13:04:14 +02:00
#include <stdlib.h>
#include <assert.h>
#ifdef _MSC_VER
#include <malloc.h>
#endif
2023-05-08 13:28:53 +02:00
/* ********************************************************
*
* Ray Packet Functions
*
* ********************************************************/
2023-05-09 13:04:14 +02:00
DF_API void df_release_ray_packet(df_ray_packet *rays)
2023-05-08 13:28:53 +02:00
{
2023-05-23 13:20:59 +02:00
#ifdef _MSC_VER
_aligned_free(rays->simd_mem);
#else
2023-05-08 13:28:53 +02:00
free(rays->simd_mem);
2023-05-23 13:20:59 +02:00
#endif
2023-05-08 13:28:53 +02:00
free(rays->ray_uvs);
memset(rays, 0, sizeof(*rays));
}
/* ********************************************************
*
* Perspective Camrea
*
* ********************************************************/
typedef struct
{
float focal_dist;
float lens_radius;
2023-05-09 13:04:14 +02:00
/* Raster space, i.e. the space for which we generate rays */
float raster_width;
float raster_height;
/* Image(=screen) space, i.e. the space in which we store pixels */
float image_width;
float image_height;
2023-05-08 13:28:53 +02:00
df_m4 screen_to_raster;
df_m4 raster_to_screen;
df_m4 raster_to_camera;
} df_perspective_camera;
static void pc_release(void *o) { df_perspective_camera *camera = o; }
2023-05-09 13:04:14 +02:00
static df_ray_packet pc_build_ray_packet(void *o)
{
df_perspective_camera *camera = o;
df_ray_packet packet;
memset(&packet, 0, sizeof(packet));
/* Generate 1 ray per pixel (ignore lens for now) */
size_t count = (size_t)camera->raster_width * (size_t)camera->raster_height;
size_t alloc_count = count;
/* Round up to nearest multiple of 4, for SSE.
* Also satisfies 16 byte alignment (assuming simd_mem is 16 byte aligned)
* because 4 * sizeof(float) = 16.
*/
if ((alloc_count % 4) != 0) {
alloc_count = ((alloc_count + 3) / 4) * 4;
}
#ifdef _MSC_VER
packet.simd_mem = _aligned_malloc(sizeof(float) * alloc_count * 6, 16);
#elif defined(_ISOC11_SOURCE) /* Feature test macro for GCC */
packet.simd_mem = aligned_alloc(16, sizeof(float) * alloc_count * 6);
#else
/* Fall back to regular malloc and hope for the best */
packet.simd_mem = malloc(sizeof(float) * alloc_count * 6);
#endif
packet.base_x = packet.simd_mem;
packet.base_y = packet.base_x + alloc_count;
packet.base_z = packet.base_y + alloc_count;
packet.dir_x = packet.base_z + alloc_count;
packet.dir_y = packet.dir_x + alloc_count;
packet.dir_z = packet.dir_y + alloc_count;
packet.ray_uvs = malloc(sizeof(df_v2) * count);
packet.ray_count = count;
size_t i = 0;
for (float y = 0; y < camera->raster_height; y += 1.f) {
for (float x = 0; x < camera->raster_width; x += 1.f) {
packet.base_x[i] = 0.f;
packet.base_y[i] = 0.f;
packet.base_z[i] = 0.f;
2023-05-08 13:28:53 +02:00
2023-05-09 13:04:14 +02:00
df_v3 raster_p = {x, y, 0.f};
df_v3 camera_p = df_transform_v3(camera->raster_to_camera, raster_p);
df_v3 dir = df_normalize_v3(camera_p);
packet.dir_x[i] = dir.x;
packet.dir_y[i] = dir.y;
packet.dir_z[i] = dir.z;
df_v3 img_p = df_transform_v3(camera->raster_to_screen, raster_p);
packet.ray_uvs[i].u = img_p.x / camera->image_width;
packet.ray_uvs[i].v = img_p.y / camera->image_height;
++i;
assert(i <= count);
}
}
return packet;
}
DF_API df_camera_i df_create_perspective_camera(float image_width,
float image_height,
float raster_width,
float raster_height,
float far_dist,
float near_dist,
float focal_dist,
float lens_radius)
2023-05-08 13:28:53 +02:00
{
df_perspective_camera *camera = malloc(sizeof(*camera));
camera->screen_to_raster = df_scale(raster_width, raster_height, 1.f);
camera->screen_to_raster =
df_mul_m4(camera->screen_to_raster, df_scale(1.f / image_width, -1.f / image_height, 1.f));
camera->screen_to_raster = df_mul_m4(camera->screen_to_raster, df_translate(0.f, -image_height, 0.f));
camera->raster_to_screen = df_inverse_transform(camera->screen_to_raster);
2023-05-09 13:04:14 +02:00
/* Perspective projection matrix */
df_m4 persp = {0.f};
DF_M4_AT(persp, 0, 0) = 1.f;
DF_M4_AT(persp, 1, 1) = 1.f;
DF_M4_AT(persp, 2, 2) = far_dist / (far_dist - near_dist);
DF_M4_AT(persp, 2, 3) = -1.f * far_dist * near_dist / (far_dist - near_dist);
DF_M4_AT(persp, 3, 2) = 1.f;
camera->raster_to_camera = df_mul_m4(df_inverse(persp), camera->raster_to_screen);
camera->focal_dist = focal_dist;
camera->lens_radius = lens_radius;
camera->raster_width = raster_width;
camera->raster_height = raster_height;
camera->image_width = image_width;
camera->image_height = image_height;
2023-05-08 13:28:53 +02:00
df_camera_i iface = {.release = pc_release, .build_ray_packet = pc_build_ray_packet, .o = camera};
return iface;
}